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Fig. 2 Pressure vs gap

Table 3 Pentolite,vs tetryl: shock sensitivity

Gap,
509,  Pressure, Mean,
Material Donor point kbar kbar
comp. B-3 (cast) tetryl 209 16.4
pentolite 209 18.0 17.2
nitroguanidine tetryl 46 63.0
= 1.59 g/cm3 pentolite 53 83.2 73.1
nitroguanidine/wax  tetryl 16 78.8
95/5 pentolite 25 119.7 99.3
= 1.55 g/em?

smaller gaps, agreement between the donors is not obtained
because the calibration curves in this region are inaccurate,
or because the pressure-time loading curves (not measured)
affect the result, or because both of these factors are opera-
tive. As one approaches zero gap the pressure-time histories
of the two donors should differ, and this factor probably has
a major effect on inducing detonation of the acceptor. In
other words, at the highest pressures, pressure amplitude
alone does not define the shock sufficiently.
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Calculation of Damped Linear Systems

by Holzer’s Method
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Belgrade, Yugoslavia

OLZER’s tabular method for the calculation of torsional

and other discrete linear systems is very well known.
When treating the free vibrations by this method, i.e., when
evaluating the natural frequencies, it generally is stated in
the literature that the parameter of the Holzer table is the
frequency w.

The fact is, however, that in the case of free vibrations the
parameter of the Holzer table is the eigenvalue A rather than
the frequency w.

To substantiate this statement, consider first the standard
single-degree-of-freedom system that is damped both ex-
ternally and internally. In this system, (—s¢) = external
damping torque (damping on the mass), and (—u¢) = in-
ternal damping torque (damping parallel to the spring).

The differential equation is

~Jo—sp—up — ke =20 (1)

Substitution of the solution assumption ¢ = ®e! in Eq.
(1) gives the eigenvalue Ay ,; in the form

Aip = ~[(s + w/2J] = j{w? — [(s + wy/2J]2} 2
j= (=D (2

hence in the form A, s = —h = jwp. (wp = damped natural
frequency; w, = undamped natural frequency.)

Generalizing this for the » mass system, one can say that,
in the case of the solution assumption ¢ = Pet!, the eigen-
values of a linear system are of the form ,A;2 = —(ah) =
j(mwp). (Subscript m refers to the mth mode.)

Now, consider a multimass system damped both externally
and internally. If the system is undamped (s: = u: = 0),
the differential equation for the first mass reads

'—J1<;'51 - /61(901 - Soz) =0 (3)

For the undamped system the “one-phase” solution assump-
tion ¢:= ®; sinwt is acceptable because there is no phase
shift between the masses. Substituting it in Eq. (3), one has

b, = & — (lez/kl)q)l (4)

which, as is well known, is the relation upon which the ordi-
nary Holzer table for the undamped system is based. 4

If the multimass system considered is damped, then the
differential equation for the first mass reads

—J1g1 — a1 — w1 — @) — k(o — ) =0 (5

Now a “two-phase” solution, hence either ¢; = P or ¢; =
e/ must be accepted because the damping produces a phase
shift.

Upon substituting the solution assumption ¢; = P:ed? in
Eq. (5), one obtains

& = & — [(—1A% — siA)/(k + wA) 1P (6)
Comparing Eqgs. (4) and (6), one sees that Jiw? and k; with
the undamped system correspond to —JA? — s;A and ki +
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wA, respectively, with the damped system. Hence, the
damped system can be solved by Holzer’s Table 1, which
will be called the simple (damped) Holzer table (because there
is no imaginary number j in its heading) and for which the
parameter of the table is necessarily the eigenvalue in the
form A1,2 = —h :l:jwp.

If the steps followed for the solution assumption ¢ = e
are performed for the solution assumption ¢ = e/, Holzer’s
Table 2 will be obtained ultimately. It will be called the
complex (damped) Holzer table; its parameter is the eigen-
value in the form A, 2 = jh = wp.l In the case of the un-
damped system, s; = w; = 0 in the tables and 2~ = 0 in the
eigenvalue. If in this case the eigenvalues A = =+jw, and
A = =+w, are applied to Tables 1 and 2, respectively, the
headings of both of these tables will be reduced to the head-
ing of the ordinary Holzer table for undamped systems.

Tablel Simple Holzer table for the calculation of damped
linear systems; parameters: a) for free vibrations, A =
—h=*= jwp, and b) for forced vibrations, (A) = jQ

2
2 2. 2 ST e Ay
AR AV IR I s R - I M g e A T, v 9,A)
1 2 3 4223 5 6 7. 5/6

Thus, the statement about the eigenvalue as the parameter
of the Holzer table in the case of free vibrations has been
proved. It holds generally, i.e., for both damped and un-
damped systems (in the case of free vibrations). However,
with the undamped systems both the eigenvalue and the
tables themselves degenerate (s; = u; = 0 so that h = 0 and
instead of wp there is w,). Consequently, in this special case
of the general case the frequency may be (only practically!)
considered as the parameter of the table. Theoretically,
the parameter of the Holzer table in the case of free vibrations
is only the eigenvalue irrespective of whether the system is
damped or undamped.

Numerical Example

It is required that the eigenvalues of the first oscillatory
mode 1A, be calculated for the torsional system of the fol-
lowing characteristics: J( = 1, J» = 2, J3 = 3 (Ib-in.-sec?),
s = 012, s, = 0.20, s3 = 0.32 (Ib-in.-sec.), by = L, by = &
(Ib-in./rad), u; = 0, us = 0.04 (Ib-in.-sec).

Table 2 Complex Holzer table for the calculation of
damped linear systems; parameters: a) for free vibrations,
A = jh & wp, and b) for forced vibrations, (A) = Q

2 . 2 ] @A § 2N
I A Gan | @ @A 5 s z(.yi/@_ JaMh |k sjuA Z—(,“—”ﬁA)E
4 i

1 2 3 4=2x3 ] 3 7= 5/8

The eigenvalues of the system can be evaluated by the trial-
and-error procedure by means of either Table 1 or Table 2
(assumption of 7 and wp, i.e., of the eigenvalue A in correct
form for the given table, calculation of the table, and drawing
of the remainder-torque curve until the remainder torque
becomes zero).

The resulting simple Holzer table for the eigenvalue of the
first oscillatory mode 1A;, = —0.0626773 = j 0.4960997
is shown here as Table 3. (Hence, the damped natural fre-

T Practically, the numerical values in both simple and complex
Holzer tables are the same and complex because the parameters
are complex in both cases.
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Table 3 Simple Holzer table calculated for 1A, =
—0.0626773 == j 0.4960997 (see numerical example)

2
- 385 A),
2 2 2, ZE N sy
3| = IA- s A 4, (- 9 A~ [ROLAPICI N A % kv uA _(__—T-—ki o
1 | 0.2457078 +| 1.0 0.2497078 + 0.2497078 + 1/3 0,7491233 «
j 0.0026564 j 0.0026564 j 0.0026584 j 0.0079693
2 | 0.4969084 +| 0.2508767 - | 0.1248632 + 0.3745710 + 0.4974929 + | 0.7521221 —
J 0.0251568| j0.0079693 | j 0.0023513 J 0.0080077 J D.0198440 | j 0.0199348
3 | 0.7466162 +(-0.5012454 + | -0.3745710 -~ | 0,0000000 +
j 0.0278133] j 0.0119655| j 0.0050077 | j 0,0000000

quency of the first mode is wp = 0.4960997 sec™; the un-
damped natural frequency of the first mode, calculated sepa-
rately, is jw, = 0.5 sec™.) It should be noticed that Table
3 for eigenvalue is “closed” (remainder torque is zero) as
it has to be.

In the case of forced vibrations of damped systems, the
headings of both simple and complex Holzer tables remain
as they are. In principle, the corresponding forms of the
parameters hold in this case as well, except for o = 0. Thus,
the simple Holzer table has to be calculated with the forcing
frequency in the form jQ and the complex one with that fre-
quency in the form @, where = forcing frequency.{

The use of the damped-system Holzer tables for the calcula-
tion of both eigenvalues and eigenvectors of damped systems
has been discussed fully in Refs. 1 and 2.
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Systematic Matrix Calculation of
Similarity Numbers
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ECAUSE the dimensions of any macroscopic variable u;
are of the form

fu;} = Dy DI D Dss (1)

where D, is mass, D» length, D; time, D, temperature, and
ai; a positive or negative integer or fraction, the dimensions
of a set of variables uy, . . . 4, may be represented by a dimen-
sional matrix |ja;;]|, where 7 indicates the dimension or row
number and j indicates the variable or column number. By
definition, a similarity number is a nondimensional product
of variables of the form

N = " w,® ... u,™ (2)
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